PERGAMON

Available online at www.sciencedirect.com

sclzncs@mnsc-m

International Journal of Heat and Mass Transfer 47 (2004) 101-109

International Journal of

I"EAT and MASS
TRANSFER

www.elsevier.com/locate/ijhmt

Solution of the radiative integral transfer equations
in rectangular participating and isotropically
scattering inhomogeneous medium

Zekeriya Altag *, Mesut Tekkalmaz

Department of Mechanical Engineering, School of Engineering and Architecture, Osmangazi University, 26480 Bati Meselik,
Eskisehir, Turkey

Received 24 July 2002; received in revised form 16 December 2002

Abstract

Radiative integral transfer equations for a rectangular participating and isotropically scattering inhomogeneous
medium are solved numerically for the incident energy and the net partial heat fluxes using the method of “subtraction
of singularity”. All the relevant single (surface integrals) and double integrals (volume integrals) are carried out ana-
lytically to reduce the computation time and numerical integration errors. The resulting system of linear equations are
solved iteratively. A benchmark problem is chosen as a rectangular inhomogeneous cold participating medium which is
subject to externally uniform diffuse radiation on the bottom surface. Solutions for linearly and quadratically varying

scattering albedos are provided in tabular form.
© 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

The radiative transfer in multidimensional rectangu-
lar geometries has numerous application areas such as
the design of combustion chambers and furnaces. In
addition, if the medium is participating, the analysis is
further complicated due to scattering, absorption and
emission. The radiative integral transfer equation
(RITE) solutions represent the exact solutions of radi-
ative transfer problems for any geometry. Since the an-
gular dependence of radiative transfer equation is
removed through the integration of the radiation in-
tensity over the solid angle to obtain incident energy, the
RITEs contain only the spatial variables and are di-
mensionally simpler than other existing approximate
methods. However, the RITEs have singular transfer
kernels and therefore they are difficult to solve. On the
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other hand, in numerical solutions the system of linear
equations, especially in multidimensional geometries,
leads to dense matrices which result in severe limitations
on the number of grid points that can be treated without
incurring prohibitive requirements for the computa-
tional memory and execution time. Yet highly accurate
(at least four significant digit) and comprehensive RITE
solutions are sought generally for benchmarking pur-
poses rather than to solve practical engineering appli-
cations.

A technique to solve singular integral equations of
the kind we encounter in radiative transfer—the Fred-
holm integral equation of the second kind—is the
method of “subtraction of singularity’” or “removal of
singularity” which was first used and validated by
Layolka and Tsai [1] to solve neutron transport prob-
lems in a rectangular geometry. The method was first
employed in the radiative transfer analysis of a two-
dimensional rectangular medium by Crosbie and Sch-
renker [2], and comprehensive tabular solutions were
provided for various benchmark cases. The method
was also successfully employed to radiative transfer
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Nomenclature

Bis, (x, 0) special function of two arguments defined
by Eq. (A.4)

Cis, (x,0) special function of two arguments defined
by Eq. (A.5)

G(x,y) incident energy (= [ [ I(x,y, Q)dQ)

I(x,y,Q) radiation intensity

Ki,(x) Bickley—Naylor functions of nth order

N number of grid spacing

S(x,y) source function defined by Eq. (4)

X, Y coordinate variables

a, b optical dimensions of the rectangular do-
main (in mfp)

f(x,), g(x,»), h(x,y) boundary integrals defined by
Egs. (5)-(7)

r polar coordinate variable

gx(x,y) net radiative heat flux in x-direction
(= [ [A(x,y,2)02.dQ)

gy(x,y) net radiative heat flux in y-direction
(= [ [ol(x,9,2)Q,dQ)

(x;,wy;) Simpsons’ quadratures for the interval (0, a)
using N, intervals

(v:;wy,;) Simpsons’ quadratures for the interval (0, b)
using N, intervals

X,y optical coordinate variables (x = fX and
y = pY)

Greek symbols
Q, Q,, Q, scattering direction and its components

o dummy integration variable

O\, by, &5, ¢, angles defined by Eq. (A.6)

B extinction coefficient (= k(x,y) + o(x,y))

k(x,y) spatially varying absorption coefficient

a(x,y) spatially varying scattering coefficient

0 polar angle

o(x,y) spatially varying scattering  albedo
(=0a(x,»)/B)

&1, &, &, & angles defined by Eq. (A.6)

Subscripts

i, grid point corresponding (x;,y;)

X belonging the x-direction/dimension

y belonging the y-direction/dimension

w wall

1 wall indices

Superscript
! dummy integration variable

equations in one-dimensional RITEs in plane-parallel
and cylindrical isotropic and linearly anisotropic me-
dium by Altag [3-5]. In literature, several studies of one-
dimensional geometries involve the solution of RITEs
with the Galerkin method [6,7], and it has not been ex-
tended to multidimensional geometries. The primarily
disadvantage of the Galerkin method is that one has to
evaluate many spatial moments of singular integrals
which are difficult to carry out analytically. Recently the
partition-extrapolation technique has found applica-
tions in the numerical solution of one- and two-dimen-
sional radiative integral transfer [8,9]. However, the
method also suffers from expensive memory and execu-
tion time requirement.

In the present work, the RITEs for a two-dimensional
inhomogeneous participating medium with isotropic
scattering are solved to establish five significant-decimal
places accurate benchmark solutions. The results are
provided in comprehensive tabular forms to aid future
researchers and/or code developers for comparison pur-
poses.

2. Radiative integral transfer equations in rectangular
enclosures

Crosbie and Schrenker’s two-dimensional radiative
transfer problem of a homogeneous medium is chosen as

a benchmark problem for inhomogeneous medium as
well [2]; the inhomogeneous property of the medium is
due to the space-dependent scattering albedo. The me-
dium is non-emitting, absorbing and isotropically scat-
tering. Uniform diffuse radiation is incident on the
bottom surface only. All walls are cold and black. The
coordinate system and the geometry are illustrated in
Fig. 1.

The integral equations for the incident energy and the
net partial heat fluxes in a inhomogeneous rectangular

y
wall 3 =b
b y
wall 4 wall 2
] y= 0
x=0 wall 1 x=a *

Fig. 1. Geometry and the coordinate system.
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medium can be written as shown in [2] by defining

p:wx—x')%(y—y')z

Glx,y) = f(x,) / / )aﬂ'(n
qx(x,y) = g(x,») + /:0 /y,:OS(X’,y’)

_ (x—)Kin(p)
2mp?

o) =)+ [ [ )

dx'dy’ )

x %ﬁiz(p)dx’dy’ 3)
with
S(xay) = w(xvy)G(xay) (4)

where x and y are the optical dimensions and are defined
as x = X and y = Y, Ki,(p) is the nth order Bickley—
Naylor functions [10], w(x,y) is the space-dependent
scattering albedo which is given by o(x,y)/f where
f=o0(x,y)+x(x,y) is the extinction coefficient while
o(x,y) and x(x,y) are the space-dependent scattering
and absorption coefficients, respectively, S(x,y) is the
isotropic source function, for non-emitting medium,
which is defined as while f(x,y), g(x,») and A(x,y) are

functions representing contributions of energy and flux
from diffuse walls. Defining p, = /(x — x')* 42, we

can write these contributions for wall 1 as

s = [ 1o S g 5

R R ©
a 2 .

o) = [t g g

where I, (x) is the diffuse radiation intensity of the
bottom wall (wall 1).

To solve the integral equations using the ‘“‘subtrac-
tion of singularity”, Egs. (1)-(3), we subtract the sin-
gularity at (x,y) = («',)') as follows

6oy = s+ [ [ [st) - sty

Kll(p) / / 1
X 3mp ' dyf + - S(x, ) H (x, ) (8)

a b
wle) =gte)+ [ [ 1) = Sx)]

G =X)Kix(p) 4 gy L
X W 45 S U ) (9)

4y(x,y) = h(x,y) + /M/io —8(x,»)]

(O E gr gy +2—1ns<x,y>V(x,y>
(10)
where

H(x,y):/ao . OK“p( ) ar ay (11)
) / /

U(x,y) LO/ ——dx'dy (12)
Klz ) ’ 3.

V(x,y) / / - dx'dy (13)

In Egs. (8)-(10), in case of (x,)’) — (x,»), the terms
under the double integral signs will vanish. Thus, the
singularities are effectively dealt with. The exact evalu-
ation of the boundary integrals, Eqgs. (5)—(7), and the
double integrals, Eqs. (11)-(13), are given in detail in
Appendix A.

3. Numerical solution method

We divide x € (0,a) and y € (0,5) to N, and N, equal
grid segments, respectively, and generate Simpson’s in-
tegration quadratures which are taken to be (x;, w,;) for
i=1,...,N,and (3, w,;) fori =1,..., N, where (x;, w,,)
and (y;,w,;) are corresponding abscissas and weights.
Then the double integrals are replaced by the quadrature
summations and using a short hand notation, for ex-
ample G(x;,y;) = G;;, for the known and/or unknown
quantities; we can write Egs. (8)—(10) as

NeNy
Gi,j = f;j + Z Wx.mwy.n Iiwm,nGmm - (Ui.jGi.j}
oy
Kii(ppnij) | 1
2Py + o PGty (14)
NeN,
qx;‘, = gi.j + Z Wx‘m"vy,n [wm.nGm,n - wi.‘jG[‘j]
iy
(X,' —Xm) Kiz(pmnij) 1
x ML w,Gyy Uy 15
LT + o P Vi Vi (15)
NeNy
CIy;_\, = h[‘/’ + Z Wx,mwy.n [wm‘nGm‘n - wi./'Gix/']
oy
(yj_yn)KiZ(pmnij) 1
X My — GV 16
2np%1‘n,i,j * 2n ¢ S ( )

where p,, ,;; = \/(xi - xm)z + *yn)z-
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Now Eq. (14) can be rearranged to constitute a sys-
tem of linear equations which need to be solved for the
incident energy within the domain. Direct solution of
this dense system through Gauss-elimination is possible
if relatively small number of intervals are used (10-30).
In this case, the dense matrices which is also computa-
tionally involved is established only once. For large
number of intervals, not only computation time but also
memory restrictions are to be overcome. In this case, to
obtain highly accurate solutions through using large
number of grids (N > 30), we have used an iterative
algorithm to avoid memory restrictions due mainly from
the storage of the resulting matrices. A double precision
computer program was written and compiled with La-
hey Fortran Compiler. The convergence was determined
when the maximum error of the two consecutive itera-
tions of the incident energy was less than 10~°; the net
partial heat fluxes were computed using Egs. (15) and
(16) after converged solutions for the incident energy
was obtained.

4. Results and discussion

In this study, the exact integral equation solutions
for space-dependent scattering albedos of w(x,y) =
0.5(x/a+y/b), w(x,y)=1—=0.5(x/a+y/b), w(x,y)=
0.7 —0.3(x*/a* +y*/b*) and o(x,y) = 0.3(1 +x*/a* +
y*/b*) are sought for square enclosures of 0.5x0.5, 1x 1
and 2.5%2.5 in mean-free-path (mfp) dimensions. In
addition, solutions for rectangular enclosures of 0.5x 1,
0.5%2, 0.5%x4, 1x0.5,2x0.5, and 4x0.5 in mfp and the
spatially varying scattering albedo of w(x,y) =0.7—
0.3(x?/a*> + y*/b*) are obtained and tabulated. The av-
erage value w(x,y) over the rectangular medium is equal
to 0.5 in all cases.

The RITE solutions for homogeneous medium given
by Crosbie and Schrenker [2] were used to validate the
computer code for various geometry and constant
scattering albedo configurations. Our solutions were in
excellent agreement (five significant digit accuracy) with
those provided by Crosbie and Schrenker [2]. The DOM
solutions for all cases were also obtained to cross-check
and validate the exact RITE solutions in inhomoge-
neous medium. In the DOM, the diamond-difference

scheme [11] and level symmetric S;¢ quadratures [12]
were adapted.

In Table 1, the effect of grid refinement on the exact
and discrete ordinate method S|4 solutions are given for
a square medium of 2.5 mfpx2.5 mfp with w(x,y) =
0.7 — 0.3(x?/a* + y*/b*). Since the numerical integration
error of Simpsons’ rule is fourth order, very accurate
solutions for the optically thin medium can be expected
with relatively small number of grids. As a result, in
square enclosures the 100x 100 and in rectangular en-
closures the 40x 100 or the 100x40 grid configuration
was used to ensure five-decimal places accuracy in the
solutions. The discrepancies of the DOM solutions are
due to the ray effect (unphysical oscillations in the so-
lIutions) and false scattering which is unavoidable in
multidimensional geometries.

In Table 2, the RITE solutions for the incident en-
ergy and the partial heat fluxes are tabulated for selected
points on the bottom, top and east walls for 0.5x0.5,
Ix1, and 2.5%2.5 (in mfp dimensions) square enclo-
sures having a space-dependent scattering albedo of
o(x,y) =0.5(x/a+y/b). In Table 3, the solutions for
the same geometries are repeated for a medium having a
scattering albedo of w(x,y) =1 —0.5(x/a + y/b).

In Tables 4 and 5, the RITE solutions for the incident
energy and the partial heat fluxes are tabulated for se-
lected points on the bottom, top and east walls for
0.5%x0.5, 1x1, and 2.5x2.5 square enclosures having
space-dependent scattering albedos of w(x,y) =0.7—
0.3(x?/a® +3*/b*) and w(x,y) = 0.3(1 +x2/a® +)*/b?),
respectively.

In Tables 6 and 7, the RITE solutions for the incident
energy and the partial heat fluxes are tabulated for se-
lected points on the bottom, top and east walls for the
rectangular enclosures having a space-dependent scat-
tering albedo of w(x,y) = 0.7 — 0.3(x*/a® + 1 /b?).

5. Conclusion

Exact integral equation solutions using the method of
subtraction of singularity for the incident energy and the
net partial heat fluxes of rectangular participating and
isotropically scattering inhomogeneous medium are
obtained. Results are presented in tabular form in five-

Table 1
Effect of grid refinement and validation (2.5 mfpx2.5 mfp, x = 1.25, y = 1.25)
Method
RITE DOM Si6
20%20 50% 50 100 % 100 20%20 50 %50 100% 100
G(x,») 0.11024 0.09218 0.09218 0.08866 0.09102 0.09165
qx(x,y) 0.01256 0.01089 0.01091 0.01082 0.01034 0.01031
qy(x,) 0.23113 0.19926 0.19936 0.21152 0.20394 0.20326
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Table 2
Exact solutions for the scattering albedo case of w(x,y) = 0.5(x/a + y/b)
x/a Geometry
a=05b=05 a=1,b=1 a=25b=25
G 44, 4q, G 44, 4q, G 4q, 4q,
Bottom wall
0.00 0.50890 —0.51985 0.98552 0.50992 -0.52367 0.98400 0.50667 -0.51735 0.98991
0.25 0.51557 —-0.02005  0.97093 0.52067 -0.02655  0.96164 0.52223 —0.02444  0.96042
0.50 0.52174 -0.01113 0.95778 0.53120 -0.01672 0.94023 0.53925 —-0.02012 0.92877
0.75 0.52466 0.00641 0.95187 0.53694 0.00668  0.92873 0.55170 0.00065  0.90490
1.00 0.51695 0.53213 0.96989 0.52378 0.54768 0.95817 0.52990 0.56422 0.94987
Top wall
0.00 0.06752 —-0.08947 0.19632 0.03827 -0.05409 0.11167 0.00740 -0.01142 0.02157
0.25 0.08242 -0.05626  0.24899 0.05019 -0.03642  0.15040 0.01185 -0.00917  0.03447
0.50 0.08907 —0.00507 0.27199 0.05618 —0.00590 0.16925 0.01478 —-0.00316 0.04263
0.75 0.08536 0.04970  0.25680 0.05414 0.02925  0.16085 0.01480 0.00587  0.04214
1.00 0.07051 0.09174 0.20409 0.04210 0.05790 0.12155 0.00987 0.01483 0.02786
y/b
East side wall
0.10 0.22372 0.42733  0.43564 0.20864 0.39719  0.39552 0.16564 0.31142  0.31720
0.25 0.18234 0.32912 0.38624 0.15577 0.28123 0.31881 0.09662 0.17250 0.19563
0.50 0.13353 0.21855  0.31216 0.10184 0.16990  0.22524 0.04552 0.07734  0.09318
0.75 0.09857 0.14592 0.25095 0.06778 0.10505 0.16222 0.02286 0.03784 0.04773
0.90 0.08155 0.11298  0.22114 0.05220 0.07678  0.13557 0.01469 0.02377  0.03382
Table 3
Exact solutions for the scattering albedo case of w(x,y) =1 —0.5(x/a + y/b)
x/a Geometry
a=0.5,b=0.5 a=1,b=1 a=25b=25
G 44, 4q, G 44, 4q, G 44, 44y
Bottom wall
0.00 0.52934 —0.56050 0.95502 0.54572 -0.59787 0.92871 0.56903 —-0.65329 0.89030
0.25 0.54691 -0.01777  0.91871 0.57830 —-0.02432  0.86292 0.63383 —-0.02006  0.76397
0.50 0.54531 0.01221 0.92291 0.57426 0.02013 0.87272 0.61999 0.03087 0.79363
0.75 0.53690 0.03258  0.93969 0.55877 0.04775  0.90264 0.59019 0.05436  0.84855
1.00 0.52058 0.54704 0.97199 0.52942 0.56954 0.95914 0.53645 0.58783 0.94784
Top wall
0.00 0.06985 —-0.0883 0.20636 0.04145 —-0.05420  0.12426 0.00964 —-0.01312  0.02940
0.25 0.08298 —0.04854  0.25640 0.05137 —-0.02818  0.16024 0.01327 —-0.00561 0.04159
0.50 0.08642 0.00497 0.27144 0.05316 0.00571 0.16860 0.01326 0.00298 0.04232
0.75 0.08019 0.05506  0.24882 0.04777 0.03531 0.15032 0.01081 0.00890  0.03461
1.00 0.06694 0.08632 0.19864 0.03780 0.05109 0.11442 0.00736 0.01052 0.02302
/LA
East side wall
0.10 0.22639 0.44108  0.44285 0.21281 0.41721 0.40445 0.17013 0.33186  0.32524
0.25 0.18256 0.33722 0.39804 0.15611 0.29214 0.33404 0.09630 0.18042 0.20818
0.50 0.12980 0.21598  0.32379 0.09660 0.16534  0.23913 0.04043 0.07076 ~ 0.10111
0.75 0.09286 0.13688 0.25593 0.06030 0.09265 0.16711 0.01727 0.02773 0.04871
0.90 0.07621 0.10381 0.22023 0.04553 0.06495  0.13348 0.01035 0.01558  0.03117

decimal places to aid researchers and/or code develop-
ers. Pertinent surface and volume integrals for rectan-

gular geometry which are singular in nature can be
analytically evaluated through special functions. This
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Table 4
Exact solutions for the scattering albedo case of w(x,y) = 0.7 — 0.3(x*/a* + y*/b*)
x/a Geometry
a=0.5,b=0.5 a=1,b=1 a=25,b=25
G 4q, 4q, G 4q, 4q, G 44, 4q,
Bottom wall
0.00 0.52402 —-0.55005 0.96280 0.53569 -0.57741 0.94408 0.54854 —-0.60948 0.92356
0.25 0.53928 -0.01942  0.93069 0.56331 -0.02702  0.88756 0.60024 —-0.02576  0.82250
0.50 0.53992 0.00716 0.92976 0.56380 0.01153 0.88736 0.59785 0.01649 0.82861
0.75 0.53342 0.02810  0.94299 0.55215 0.04039  0.91027 0.57691 0.04386  0.86755
1.00 0.51890 0.54218 0.97275 0.52638 0.56122 0.96147 0.53111 0.57435 0.95412
Top wall
0.00 0.06920 —0.08838 0.20400 0.04053 —-0.05395 0.12110 0.00891 -0.01249 0.02705
0.25 0.08276 —0.05053  0.25493 0.05094 —-0.03037  0.15808 0.01274 —0.00665  0.03962
0.50 0.08696 0.00299 0.27196 0.05371 0.00343 0.16905 0.01342 0.00176 0.04224
0.75 0.08108 0.05443  0.25037 0.04876 0.03459  0.15211 0.01127 0.00853  0.03548
1.00 0.06746 0.08718 0.19939 0.03835 0.05203 0.11526 0.00758 0.01092 0.02340
y/b
East side wall
0.10 0.22485 0.43646  0.44061 0.20998 0.40928  0.40135 0.16522 0.31934  0.32133
0.25 0.18200 0.33510 0.39438 0.15500 0.28858 0.32884 0.09443 0.17551 0.20244
0.50 0.13045 0.21695  0.32107 0.09737 0.16656  0.23567 0.04087 0.07158  0.09856
0.75 0.09382 0.13871 0.25516 0.06143 0.09488 0.16629 0.01790 0.02903 0.04836
0.90 0.07700 0.10531 0.22046 0.04641 0.06667  0.13378 0.01077 0.01643  0.03136
Table 5
Exact solutions for the scattering albedo case of w(x,y) = 0.3(1 +x2/a* +y*/b?)
x/a Geometry
a=0.5,b=0.5 a=1,b=1 a=25b=25
G 4q, 4q, G 44, 4q, G 44, 4q,
Bottom wall
0.00 0.51353 —0.52903  0.97888 0.51776 —0.53988  0.97240 0.51942 —-0.54515  0.97052
0.25 0.52224 -0.01862 0.96067 0.53243 —0.02463 0.94296 0.54296 -0.02197 0.92638
0.50 0.52651 —-0.00682  0.95190 0.53965 -0.01044  0.92884 0.55421 -0.01320  0.90618
0.75 0.52782 0.01026 0.94899 0.54262 0.01219 0.92237 0.56230 0.00622 0.88986
1.00 0.51847 0.53658  0.96930 0.52644 0.55492  0.95624 0.53463 0.57580  0.94416
Top wall
0.00 0.06802 —0.08919  0.19831 0.03886 —-0.05395  0.11395 0.00772 -0.01154  0.02270
0.25 0.08247 -0.05418 0.25004 0.05023 —-0.03405 0.15154 0.01185 -0.00799 0.03495
0.50 0.08832 —-0.00303  0.27099 0.05513 —0.00350  0.16764 0.01396 —-0.00181 0.04109
0.75 0.08422 0.05024 0.25470 0.05255 0.02975 0.15771 0.01352 0.00603 0.03934
1.00 0.06981 0.09053  0.20298 0.04114 0.05617  0.11987 0.00916 0.01346  0.02643
LB
East side wall
0.10 0.22509 0.43151 0.43801 0.21106 0.40396 0.39887 0.16990 0.32188 0.32141
0.25 0.18272 0.33080  0.38997 0.15642 0.28362  0.32415 0.09777 0.17535  0.20143
0.50 0.13265 0.21706 0.31490 0.10050 0.16739 0.22873 0.04414 0.07435 0.09567
0.75 0.09736 0.14352  0.25158 0.06601 0.10144  0.16270 0.02126 0.03442  0.04756
0.90 0.08052 0.11099 0.22063 0.05076 0.07390 0.13460 0.01352 0.02130 0.03273
analytical treatment reduces computation time signifi- trolled by the user. The method is suitable to produce

cantly and the accuracy of the integrals can be con- benchmark problems of high accuracy.
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Table 6
Exact solutions for the scattering albedo case of w(x,y) = 0.7 — 0.3(x*/a* + y*/b*)
x/a Geometry
a=05,b=1 a=055b=2 a=05>b=4
G 44, 4q, G 44, 4q, G 4q, 4q,
Bottom wall
0.00 0.52582 —-0.55262 0.95823 0.52654 —-0.55350 0.95647 0.52705 —0.55428 0.95551
0.25 0.54136 —-0.02070  0.92505 0.54205 —0.02108  0.92321 0.54237 -0.02113  0.92271
0.50 0.54209 0.00736 0.92380 0.54280 0.00739 0.92187 0.54310 0.00740 0.92132
0.75 0.53543 0.02967  0.93759 0.53609 0.03010  0.93581 0.53638 0.03019  0.93532
1.00 0.52056 0.54472 0.96856 0.52119 0.54553 0.96699 0.52154 0.54608 0.96632
Top wall
0.00 0.02420 -0.02107 0.07799 0.00434 —-0.00241 0.01482 0.00026 —-0.00009 0.00091
0.25 0.02645 —-0.01074  0.08648 0.00456 —0.00113  0.01558 0.00027 —0.00004  0.00094
0.50 0.02695 0.00109 0.08870 0.00459 0.00019 0.01571 0.00027 0.00001 0.00094
0.75 0.02590 0.01229  0.08495 0.00447 0.00141  0.01533 0.00026 0.00006  0.00093
1.00 0.02359 0.02094 0.07629 0.00424 0.00241 0.01454 0.00025 0.00009 0.00090
awo
East side wall
0.10 0.19716 0.36933  0.40480 0.15303 0.26601  0.34292 0.09453 0.13993  0.23751
0.25 0.13403 0.22387 0.31621 0.07465 0.10203 0.19611 0.02661 0.02682 0.07597
0.50 0.07290 0.09878  0.19765 0.02599 0.02569  0.07608 0.00476 0.00337  0.01464
0.75 0.04102 0.04541 0.12191 0.01023 0.00788 0.03212 0.00106 0.00058 0.00343
0.90 0.02942 0.02875  0.09187 0.00603 0.00398  0.01983 0.00045 0.00021 0.00151
Table 7
Exact solutions for the scattering albedo case of w(x,y) = 0.7 — 0.3(x*/a® + y*/b*)
x/a Geometry
a=1,b=05 a=2,b=05 a=4,b=05
G 4q. 4q, G 44, 4q, G 44, 44y
Bottom wall
0.00 0.53181 ~0.57063 095336 0.53658 —0.58484  0.94882  0.53823 ~0.59110  0.94803
0.25 0.55777 —-0.02331  0.90183 0.57524 —-0.01874  0.87769 0.58725 —-0.00756  0.86373
0.50 0.55791 0.01063  0.90264 0.57313 0.01232  0.88343 0.58110 0.01028  0.87555
0.75 0.54708 0.03557  0.92304 0.55805 0.03283  0.90904 0.56405 0.02073  0.90250
1.00 0.52298 0.55469 0.96925 0.52356 0.55794 0.97006 0.52194 0.55440 0.97239
Top wall
0.00 0.09260 —-0.15102 0.24890 0.10276 —-0.18247 0.26153 0.10526 —-0.19053 0.26369
0.25 0.13368 —0.08914  0.38442 0.18090 —-0.07664  0.48807 0.21101 —-0.02868  0.54071
0.50 0.14583 0.00670  0.42389 0.19322 0.00970  0.51440 0.21228 0.00884  0.53801
0.75 0.12871 0.09654  0.37192 0.17031 0.08657  0.46447 0.19463 0.03921  0.50855
1.00 0.08820 0.14511 0.23847 0.09488 0.16819 0.24527 0.09448 0.16822 0.24368
iwo
East side wall
0.10 0.23220 0.46021  0.43822 0.23337 0.46550  0.43870 0.23168 0.46135  0.44001
0.25 0.19416 0.37480 0.39676 0.19638 0.38374 0.39713 0.19480 0.37978 0.39774
0.50 0.14860 0.27451 0.33724 0.15262 0.28952  0.33871 0.15131 0.28647  0.33814
0.75 0.11463 0.20108 0.28524 0.12019 0.22099 0.28910 0.11930 0.21937 0.28776
0.90 0.09803 0.16579  0.25665 0.10432 0.18782  0.26224 0.10372 0.18718  0.26069
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Appendix A

The boundary integrals, Egs. (5)—(7), are evaluated
upon x — X' = ytan o substitution. Eq. (5), yields

1 X
=_—{Bi an”!' | =
f(x,p) Zn{ is) (y, tan (y))
—Q—Bisz(y,tan‘1 (a;x))} (A.1)
Similarly, using the same substitution, we obtain
(x,y) = L Ciss ( y,tan™!  *
g\, y) = o 3( ) ¥
— Cis3 <y, tan™! (a — x)) } (A.2)
y
and

h(x, ) :%{Bm (y, tan"! G))
+ Biss (y, tan~! (“;x))} (A.3)

where
0
Bis, (x, 0) = / Ki, (x sec o) (cos o)" > dar (A4)
a=0
and
0
Cis, (x,0) = / Ki, (x sec o) sin ar(cos )" dax (A.5)
a=0

which can be evaluated from their exact series expan-
sions [13].

To evaluate the double integrals, Eqs. (11)-(13), we
transform these into polar coordinates by taking
X —x=rcosf and y —y =rsinf. The area element
becomes dx'dy’ = rdrdf. The integration domain is
depicted in Fig. 2. The r integration is simple and
straightforward since [’ Ki;(r)dr = 1 — Kiy(r;), refer-
ring to Fig. 2, we can split the integrations into four
triangular regions as,

ri=(a—x)/cosb, r,=(b—y)/sin0

rs = —x/cosl, ry=—y/sin0

¢, =tan"'[y/(a—x)], & =tan"'[(b—y)/(a —x)]
¢, =tan""[(a —x)/(b—y)], & =tan"'[x/(b— )]
¢, =tan'[(b—y)/x], & = tan"'[y/x]

by = tan™! [x/y], &= tan™! [(a —x)/y]
(A.6)

y
b —
r;
& b - y
B ¢ ~ o . Y
YV |Is S & 1
& ¢
¢4 54
y
ry
X a e x
S f a-x

Fig. 2. Schematic for polar integration.

Finally, Eq. (11) is written as

H(xvy) =

" {1 Kisl(a — x)/cos 0]} d0
1

n/2+&,
+/ {1 = Ki[(b— y)/sin 6]} dO

&

+/n+é} {1 = Kis[ — x/ cos 0]} d

[2+&

+ /Mm (1—Ki[—y/sin0}d0 (A7)

n+&3

Also noting that ¢, + & =n/2, ¢; + & =n/2 and so
on, we can rewrite Eq. (A.7) as

H(x,y) = 21 — /¢1 Kib[(a — x)/ cos 6] dO
— /Lfl Kiz[(a —x)/cos 0] do
- /¢2 Kis[(b — y)/ cos 0] d6
- /éz Ki[(b —y)/cos 0]do
0
$3 &
- / Ki,[x/ cos 0] df — / Kiy[x/ cos 6] d6
0 0

[N &
- / Kiy[y/ cos 0] do — / Ki,[y/ cos 0]dé
0 0

(A.8)

Using Eqs. (A.4) and (A.5), an exact expression for Eq.
(A.8) is found to be
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H(x,y) =2n — Bis;(a — x, ¢;) — Bisa(a —x, &)
— Bisy(b — y, ¢,) — Bisy (b — 3, &)
— Bisa (x, ¢3) — Bisa(x, &)
— Bisy(y, ¢4) — Bisa(v, &) (A9)

Similarly, using the same integration procedure for
U(x,y) and ¥V (x,y), we arrive at

U(x,y)
= "sing, - Zsiné, + Biss(a —x, ;)
4 4
. Y Y
+ Bis;(a — x, &) +Z cos ¢, ~2 cos &,

+ Cis3 (b =y, ¢,) — Ciss (b -y, &)

n g sin ¢, + % sin & — Biss (v, §3)
— Bis;(x, &) — T cos b4+ T cos &
4 4

— Ciss (v, ) + Ciss(v, &) (A.10)
and
V(x,)

= —g cos ¢, +g cos &, — Cisz(a — x, ¢y)
4 Ciss(a—x,&) — Zsing, — = siné,
4 4
+ Bisy (b — 1, ) + Biss (b — v, &) + 5 c0s 6

- g cos &; + Cisz(x, ¢5) — Cis; (x, &3) +g sin ¢,

+ g sin & — Biss(, ¢,) — Biss(, &) (A.11)

These functions can be calculated once and stored so
that in an iterative solution algorithm repeated compu-
tations are not needed.
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